
Exam — Analysis (WBMA012-05)

Wednesday 28 January 2026, 11.45h–13.45h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. Provide clear arguments for all your answers: only answering “yes”, “no”, or “42”
is not sufficient. You may use all theorems and statements in the book, but you
should clearly indicate which of them you are using.

3. The total score for all questions equals 90. If p is the number of marks then the
exam grade is G = 1 + p/10.

DON’T PANIC
When a problem seems overwhelming, pause, breathe, and tackle it step by step

Problem 1 (5 + 5 + 5 = 15 points)

(a) Define what it means for two sets A and B to have the same cardinality.

(b) Prove that the interval (0, 1) has the same cardinality as the interval (0,∞).

(c) Is it possible for a sequence (an) ⊆ (0, 1) to reach every point in the interval, that
is, for all x ∈ (0, 1) there exists Nx ∈ N such that aNx = x? Justify your answer.

Problem 2 (4 + 6 + 5 = 15 points)

Let x1 = 7 and define

xn+1 =
1

2

(
xn +

7

xn

)
.

Prove the following statememts:

(a) x2
n ≥ 7 for all n ∈ N.

(b) xn+1 ≤ xn for all n ∈ N. Hint: what is xn − xn+1?

(c) xn converges and lim xn =
√
7.

Problem 3 (8 + 7 = 15 points)

(a) Prove that if A ⊆ R is compact, then for each ϵ > 0 there exists finitely many points
a1, . . . , aN ∈ A such that

A ⊂ Vϵ(a1) ∪ Vϵ(a2) ∪ . . . ∪ Vϵ(aN).

(b) Show that A =
{

1
n
| n ∈ N

}
is not compact but satisfies the property nevertheless.

Please turn over for problems 4, 5 and 6!
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Problem 4 (9 + 6 = 15 points)

Let f : R → R be differentiable and assume that f ′ is bounded, that is, ∃M > 0 such
that |f ′(x)| ≤ M for all x ∈ R. Let g : R → R be uniformly continuous.

(a) Show that the function h(x) = f(g(x)) is uniformly continuous on R.

(b) Assume now that f ′ is not bounded. Is h uniformly continuous? If so, prove the
statement, otherwise give a counterexample.

Problem 5 (4 + 4 + 7 = 15 points)

Consider the function

h(x) =
∞∑
n=1

2

2 cos2(nx) + n2
.

Prove the following statements:

(a) The series converges uniformly on R.

(b) h is continuous on R.

(c) h is differentiable on R.

Problem 6 (9 + 6 = 15 points)

Consider the modified Dirichlet function h : [0, 1] → R defined by

h(x) =

{
x if x ∈ Q
0 otherwise

.

Prove the following statements:

(a) Show that U(h, P ) > 1
2

for any partition P of [0, 1].
Hint: prove that xk(xk − xk−1) >

1
2
(xk + xk−1)(xk − xk−1).

(b) Is h integrable on [0, 1]? Justify your answer.

Please do not forget to fill out the online course evaluation!

End of test (90 points)
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Note that all the problems could be solved in multiple ways, and not all of those solu-
tions are included here.

Solution of problem 1 (5 + 5 + 5 = 15 points)

(a) A has the same cardinality as B if there exists a bijective function f : A → B, that
is, f is one-to-one and onto.

(b) Consider the function f : (0, 1) → (0,∞) defined by

f(x) =
x

1− x
.

This function is bijective with inverse function f−1 : (0,∞) → (0, 1) defined by

f−1(y) =
y

1 + y
.

This can be shown by explicitly solving y = f(x) and observing that in the domain
1 + y > y > 0. Therefore (0, 1) has the same cardinality as (0,∞).

(c) No.

Justification 1. Since the interval (0, 1) is uncountable, while the sequence (an) is
countable (as it is indexed by the natural numbers), there exist infinitely many points
in (0, 1) that are not reached by the sequence (an).

Justification 2. Otherwise, (an) would provide a bijection between N and (0, 1), which
is impossible since (0, 1) is uncountable and N is countable.
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Solution of problem 2 (4 + 6 + 5 = 15 points)

(a) Since x2
1 = 49 > 7 the statement is true for n = 1.

Now assume that x2
n > 7 for some n ∈ N, then

x2
n+1 − 7 =

1

4

(
x2
n + 14 +

49

x2
n

)
− 7

=
1

4

(
x2
n + 14 +

49

x2
n

− 28

)
=

1

4

(
x2
n − 14 +

49

x2
n

)
=

1

4

(
xn −

7

xn

)2

≥ 0,

with equality if and only if xn =
√
7.

Since xn >
√
7 by induction hypothesis, it follows that x2

n+1 − 7 > 0.

Thus, by induction, x2
n > 7 for all n ∈ N.

(b) By part (a) it follows that

xn − xn+1 = xn −
1

2

(
xn +

7

xn

)
=

xn

2
− 7

2xn

=
x2
n − 7

2xn

.

To show that xn+1 < xn it suffices to show that xn > 0 since we already know from
part (a) that x2

n − 7 > 0.

Either xn+1 >
√
7 or xn+1 < −

√
7. From the definition of the sequence (xn), it

follows that xn > 0 implies that xn+1 > 0. Since x1 > 0, it follows that xn > 0 for all
n ∈ N, and this rules out the possibility of having xn < −

√
7 and thus xn+1Mxn for

all n ∈ N.

(c) By parts (a) and (b) it follows that (xn) decreases and is bounded from below. The
Monotone Convergence Theorem implies that x = lim xn exists.

Note that x = lim xn+1 as well. The Algebraic Limit Theorem shows that x satisfies
the equation x = 1

2

(
x+ 7

x

)
, or, equivalently, x2 = 7. Hence, x =

√
7.
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Problem 3 (8 + 7 = 15 points)

(a) Let ϵ > 0 be arbitrary. For any a ∈ A, the set Vϵ(a) is an open set.

The collection of open sets {Vϵ(a) | a ∈ A} is an open cover of A, since A ⊂
∪a∈AVϵ(a).

Since A is compact, any open cover has a finite subcover. That is, there exist finitely
many points a1, . . . , aN ∈ A such that

A ⊂ Vϵ(a1) ∪ Vϵ(a2) ∪ . . . ∪ Vϵ(aN).

(b) The set A is not compact since it is not closed: the limit point 0 of A does not belong
to A.

Let ϵ > 0 be arbitrary and take N ∈ N such that 1/N < ϵ. Then 0 ∈ Vϵ(1/N) and A
has only finitely many elements outside Vϵ(1/N) since if 1/n ̸∈ Vϵ(1/N), then

1

n
>

1

N
+ ϵ =⇒ n <

N

1 +Nϵ
.

This shows that the noncompact set A can be covered by finitely many of the ϵ-
neighbourhoods Vϵ(1/n).

— Page 5 of 8 —



Solution of problem 4 (9 + 6 = 15 points)

(a) Since f ′ is bounded, by the Mean Value Theorem it follows that for all x, y ∈ R there
exists c ∈ (x, y) such that

|f(x)− f(y)| = |f ′(c)(x− y)| ≤ M |x− y|.

Let ϵ > 0 be arbitrary. Since g is uniformly continuous, there exists δ > 0 such that

|x− y| < δ =⇒ |g(x)− g(y)| < ϵ

M
for all x, y ∈ R.

Therefore, for all x, y ∈ R such that |x− y| < δ we have

|h(x)− h(y)| = |f(g(x))− f(g(y))| ≤ M |g(x)− g(y)| < M
ϵ

M
= ϵ,

which shows that h is uniformly continuous on R.

(b) No.

For a counterexample one can take f(x) = x2 and g(x) = x. Then f ′(x) = x is not
bounded on R and h(x) = f(g(x)) = x2 is not uniformly continuous on R.
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Solution of problem 5 (4 + 4 + 7 = 15 points)

(a) For all x ∈ R and all n ∈ N we have

0 ≤ fn(x) ≤
2

n2
, where fn(x) =

2

2 cos2(nx) + n2
.

Since the series
∑∞

n=1
2
n2 converges, by the Weierstrass M-test with Mn = 2

n2 it fol-
lows that h(x) =

∑∞
n=1 fn(x) converges uniformly on R.

(b) Each function fn is continuous on R: this follows from the fact that the denominator
of fn(x) is never zero, the Algebraic Continuity Theorem and the fact that the cosine
is a continuous function.

Since the series defining h(x) converges uniformly on R, it follows that it is continu-
ous on R.

(c) Let us compute the derivative of fn(x):

f ′
n(x) =

d

dx

(
2

2 cos2(nx) + n2

)
=

8n cos(nx) sin(nx)

(2 cos2(nx) + n2)2
.

This is well defined for all x ∈ R and all n ∈ N, which in particular shows that each
fn is differentiable on R.

For any c > 0,

|f ′
n(x)| ≤

8n

(2 cos2(nx) + n2)2
≤ 8n

n4
=

8

n3
for all x ∈ [−c, c].

The series
∑∞

n=1
8
n3 converges, so by the Weierstrass M-test with Mn = 8

n3 it follows
that the series

∑∞
n=1 f

′
n(x) converges uniformly on [−c, c].

Observe that
∑∞

n=1 fn(0) =
∑∞

n=1
2

2+n2 converges.

Therefore, by the theorem on the term-by-term differentiation of series of functions,
it follows that h is differentiable on [−c, c]. Since c is arbittray, h is differentiable on
all R.
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Solution of problem 6 (9 + 6 = 15 points)

(a) Let P = {0 = x0 < x1 < . . . < xN = 1} be an arbitrary partition of [0, 1]. Observe
that

Mk = sup{h(x) | x ∈ [xk−1, xk]} = xk.

Further justification here, using the density of the rationals, is optional.

Therefore, the upper sum of h with respect to the partition P is given by

U(h, P ) =
N∑
k=1

Mk(xk − xk−1) =
N∑
k=1

xk(xk − xk−1).

Note that for all k = 1, . . . , n we have

xk > xk−1 =⇒ xk + xk > xk + xk−1 =⇒ xk >
1

2
(xk + xk−1).

Therefore, the upper sum can be bounded below as follows:

U(h, P ) =
N∑
k=1

xk(xk − xk−1) >
N∑
k=1

1

2
(xk + xk−1)(xk − xk−1)

=
1

2

N∑
k=1

(x2
k − x2

k−1) =
1

2
(x2

N − x2
0) =

1

2
.

(b) No.

Let P = {0 = x0 < x1 < . . . < xN = 1} be an arbitrary partition of [0, 1]. Observe
that

mk = inf{h(x) | x ∈ [xk−1, xk]} = 0.

Thus, the lower sum of h with respect to the partition P is L(h, P ) = 0.

Combining this with part (a) it follows that for any partition P of [0, 1] we have

U(h, P )− L(h, P ) >
1

2

and thus h is not integrable on [0, 1].
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